
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

TPF-TOOLS - A MULTI-INSTANCE JACKTRIP CLONE

Roman Haefeli

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
roman.haefeli@zhdk.ch

Johannes Schütt

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
johannes.schuett@zhdk.ch

Patrick Müller

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
patrick.mueller@zhdk.ch

ABSTRACT

Tpf-tools are used to establish bi-directional, low-latency, multichan-
nel audio transmission between two or more geographically distant
locations. The tool set consists of a server part (the tpf-server) and
a client part (the tpf-client) and is heavily inspired by the JackTrip
utility. It is based on the same protocol. It facilitates the handling
of many concurrent audio transmissions in setups with more than
two endpoints. Also, it eliminates the requirement of one endpoint
having a public IP address or port forwarding configuration.

1. INTRODUCTION

The JackTrip[1] utility has proven to be a very useful and versatile
tool for our research into the so-called telematic performance format
(tpf), staged (musical or other kinds) events that take place simulta-
neously at two or more geographically distant concert venues. For
these concerts, the stage is designed to blend physically present local
performers with their remote counterparts, represented by means of
low-latency video (UltraGrid 1) and audio (JackTrip) transmission.

1.1. The obstacles of current IP networks

We have successfully used the JackTrip utility in many of our telem-
atic concerts. The utility operates in two modes: client mode and
server mode. For an audio transmission to take place, one end runs it
in server mode listening for an inbound connection, while the other
end runs it as client, thus initiating the connection. This works well
so long as the client "sees" the IP address of the server. In today’s
Internet, most computers touched by human beings are assigned an
IP address from a local area network (LAN) which is protected by
a NAT router 2 . Public IP addresses are usually only assigned to
headless servers and – apparently – NAT routers, but not to devices
touched by humans. This topology divides the Internet in service
providers and consumers and reflects the predominant capitalist ide-
ology of today’s Internet [2, Chapter 5]. At the same time, it hin-
ders our efforts to perform telematic concerts. Running JackTrip in
server mode at a concert venue requires a computer that has either a
public IP assigned, or the proper port forwarding configured on the
local network router. At venues where the performers are not the
owners or administrators of the local network, this often bears huge
administrative overheads and dealing with IT staff who may be more
concerned about security than artistic achievements.

1Software for low-latency video transmission http://www.ultragrid.cz/
2NAT (network address translation) routers separate the LAN from the

Internet. This increases security, because local computers are invisible from
the Internet. It is also a way to deal with IPv4 address exhaustion, because
all devices of a local network share one public IP address for outbound con-
nections.

1.2. The complexity of many nodes

Another complexity we have encountered is the planning and set up
of JackTrip connections when, not two, but three or (for a test situa-
tion) four venues are participating in an event. Two endpoints require
one link. Three endpoints require three links, while four endpoints
require six links. The number of links grows quickly with the num-
ber of endpoints. Events with more than two nodes require meticu-
lous and careful planning.

1.3. Our motivation

We are looking for ways to streamline our processes and improve
our tools in order to be able to shift our focus away from technical
to more artistic aspects. JackTrip is the tool of our choice, because it
is multi-platform, open source, uses JACK 3 and thus integrates well
with existing professional audio software (e.g. Ardour). However,
we saw an opportunity in adding a higher layer on top of the strong
basis JackTrip gives us. In our efforts, we have developed a tool set
that addresses the obstacles we’ve been experiencing:

• None of the endpoints need a public IP address.

• The client manages the audio transmissions to many endpoints
and abstracts the complexity of such setups away, while pre-
senting a simple, yet comprehensive interface to the user.

In this paper we present our tool set consisting of the tpf-client 4

(the software that is running on each participating endpoint) and the
tpf-server 5 (the software that enables communication between the
clients and coordinates audio transmissions).

2. VARIOUS CONNECTION MODES

2.1. Client connects to server (standard mode)

The JackTrip utility is designed so that both ends are sending simi-
larly formatted UDP 6 packets. In server mode, it opens a listening
socket that awaits for incoming connections. As soon as a packet ar-
rives, it starts sending packets to the sender address of the incoming
packets. In client mode, it immediately starts sending packets. The
transmission is established as soon as both ends are up and running.
This only works when the IP address of the server is visible to the
client.

3Jack Audio Connection Kit, a sound server daemon for connecting audio
applications and sound cards. http://www.jackaudio.org/

4The tpf-client is available at https://gitlab.zhdk.ch/TPF/tpf-client.
5The tpf-server is available at https://gitlab.zhdk.ch/TPF/tpf-server.
6User Datagram Protocol, a connectionless protocol based on the Internet

Protocol that operates on the Transport Layer (Layer 4) of the OSI model.
Applications with a strong focus on low latency often use it for transport.

https://www.zhdk.ch/en/research/icst
https://www.zhdk.ch/en/research/icst
mailto:roman.haefeli@zhdk.ch
https://www.zhdk.ch/en/research/icst
https://www.zhdk.ch/en/research/icst
mailto:johannes.schuett@zhdk.ch
https://www.zhdk.ch/en/research/icst
https://www.zhdk.ch/en/research/icst
mailto:patrick.mueller@zhdk.ch
http://www.ultragrid.cz/
http://www.jackaudio.org/
https://gitlab.zhdk.ch/TPF/tpf-client
https://gitlab.zhdk.ch/TPF/tpf-server

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.2. Two clients connect to each other

A transmission can also be established when running both endpoints
in client mode so long as both clients specify both bind port and peer
port. The peer port of the first client matches the bind port of the
second client, and vice versa.

An example of a JackTrip setup with both instances running as
client:

$ jacktrip -c 192.168.0.12 --bindport 2000
--peerport 3000

$ jacktrip -c 192.168.0.11 --bindport 3000
--peerport 2000

This requires both ends to have an IP address visible to the other
party. If one or both endpoints are hidden by a NAT-firewall, a con-
nection cannot be established. However, this setup shows that the
JackTrip design does not mandate one party to run as server.

2.3. Connection using a UDP proxy

The fact that a transmission can happen with two endpoints both
running in client mode is crucial for the next step: establishing a
transmission where none of the endpoints are assigned a public IP
address. Since we want both endpoints to run in client mode, we
need a third party that has assigned a public IP address and thus
is visible for both endpoints, even when they are behind a firewall.
This third party acts as proxy for both endpoints by relaying pack-
ets from client A to client B and vice versa. This technique passes
most types of firewalls easily because the client initiates the connec-
tion. It works transparently for both endpoints as they do not have
to know their respective peer’s IP address. They simply connect to
the UDP proxy. Since the JackTrip packet format is agnostic of the
underlying transport protocol, all connection specific details are part
of the UDP header and the payload does not contain any reference
to the client address or port number. This allows the UDP proxy to
relay incoming datagrams as is, without inspecting or changing the
payload.

3. SUBSCRIPTION-BASED UDP PROXY

The simplest variant of a UDP proxy knows exactly two endpoint
addresses and relays packets between them. However, this design
mandates that each parallel transmission uses an instance of the UDP
proxy, each listening on a dedicated port. The purpose of the sub-
scription-based UDP proxy is to allow many parallel transmissions
on the same port. To know which endpoints belong to a certain trans-
mission, the endpoints send a so called token that is unique per trans-
mission. If two clients send the same token, a transmission between
those endpoints is established. This design allows an arbitrary num-
ber of transmissions to run on the same port, and each transmission is
protected from intentional or unintentional interference by the token.
Because of the requirement to send a token, the subscription-based
UDP proxy does not work with the traditional JackTrip, at least not
out-of-the-box 7 . Also, both parties intending to participate in a
transmission must first agree on a common token through a separate
channel.

7JackTrip could be wrapped into a script that first sends the token using
the same bind port before it starts JackTrip

3.1. Implementation

The tpf-server presented here uses a Python 8 script as subscription-
based UDP proxy. It uses two dictionaries (dicts) that are empty
at start-up: a token dict and a link dict. The token dict stores the
token string and sender adress when a token message is received.
The token message is a UDP packet containting a string like

_TOKEN XXXX

where XXXX is the token string, an arbitrary string of arbitrary length.
If a token message is received, its token string is looked up in the to-
ken dict. If there is no entry found, an entry is added to the token
dict with the token string as key and the sender address as value. If
another token message is received carrying the same token string but
from a different sender address, two entries are made to the link dict.
The first entry uses the address from the token dict as key and the
sender address of the last token message as value. The second en-
try uses the same two addresses, but key and value are interchanged.
After creating the entries to the link dict, the respective entry in the
token dict is deleted, so that the same token may be used later by
another party.

src: dst:

12.54.7.7:30001 195.175.247.53:4460

Incoming UDP datagram

src: dst:

195.175.247.53:4460 98.65.4.4.30005

Outgoing UDP datagram

src: dst:

62.32.31.237:50102 121.211.107.157:43211

121.211.107.157:43211 62.32.31.237:50102

12.54.7.7:30001 98.65.4.4.30005

98.65.4.4.30005 12.54.7.7:30001

Link Dict

UDP proxy listening on 195.176.247.53:4460

Figure 1: Subscription-based UDP proxy.

Since the UDP protocol does not guarantee that packets reach
their destination, the client must keep sending token messages at a
low rate (i.e. one message per second). When the client receives a
packet for the first time, it stops sending token messages.

3.2. Considerations

Creating two entries per transmission into the link dict seems like a
waste of memory, but it allows for a very quick look-up to determine
the destination on an incoming packet. Keeping the latency low has
the highest priority in our use case.

Although Python, as an interpreted language, is not among the
fastest, it was the preferred choice for rapid prototyping and exper-
imenting. It turned out that the UDP proxy written in Python was
never the bottleneck in our performance tests and although it causes
some CPU load under load, it does not seem to add a significant la-
tency to the UDP transport. There has not yet been a pressing need
to rewrite the UDP proxy in a more performant way.

8Python is an interpreted programming language supporting many
paradigms. https://www.python.org/

https://www.python.org/

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

4. THE TPF SERVER

The complexity of a setup increases quickly with the number of par-
ticipating endpoints, as we showed before. We wanted software to
manage the complex part of handling many parallel audio transmis-
sions. The engineer should not have to deal with many terminal win-
dows for running many JackTrip instances and know what IP address
and port number each of their peer uses. Simplifying the involved
processes was the main motivation for defining a protocol [3] and
writing a server software implementing that protocol. It is worth
noting that this part is orthogonal to the problem of audio transmis-
sion. The tpf-server is not involved in transmission of any audio data.
Rather, it enables clients to know about each other and to let them
initiate audio transmissions. The communication between server and
clients uses TCP and runs on different ports.

4.1. Based on netpd-server and OSC

In order to reduce development efforts, the design is based on exist-
ing software – the netpd-server 9 – that was extended to implement
the tpf-server presented here. The netpd-server is a relay for OSC
messages and was developed for the netpd [4] project, a framework
based on Pure Data (Pd) [5] that allows geographically remote clients
to do electronic music together in real-time by synchronizing instru-
ment states. The netpd framework uses OSC [6] for the communica-
tion, while OSC messages are encapsulated by SLIP [7] and trans-
ported by TCP. The OSC 1.1 specification [8] proposes SLIP to de-
limit OSC messages when transported by stream-oriented protocols
such as TCP. While many OSC applications use UDP for transport
for simplicity and speed, data integrity and correct order are crucial
for the netpd framework. Also, for the tpf-server, whose purpose is
to coordinate clients and allow them to share data, and which is not
involved in the audio transmission directly, reliability trumps speed.
TCP has a notion of connection, so for a server using TCP, there is
no ambiguity in knowing when a client joins or leaves. With UDP
it is much harder to clearly determine a client’s state (e.g. joined or
left).

4.2. netpd-server

The netpd-server defines rules about how incoming OSC messages
are forwarded to the connected clients. This allows clients to send
messages to specific peer clients, broadcast messages to all clients,
or send messages to the server itself. The netpd-server forwards OSC
messages according to the first element of the OSC path. The set of
supported values for this field is listed here:

field forwarding action
b message is broadcast to all connected clients
s message is intended for the server itself (not forwarded)

<int> message is forwarded to the client with ID <int>

Table 1: List of valid receivers

4.3. The tpf-server internals

The tpf-server loads the netpd-server as an abstraction [9]. It re-
serves the OSC name space /s/tpf, which means all received mes-

9The netpd-server is part of the netpd framework developed by Roman
Haefeli. The code is hosted at https://github.com/reduzent/netpd-server

sages whose OSC address starts with /s/tpf are handled by the
tpf-server. The protocol is built on top of the protocol of the netpd-
server. The exact protocol specification is part of the tpf-server pack-
age [3]. Since the protocol is based on OSC, it is agnostic of any
software framework or programming language. It could be imple-
mented in any language where libraries exist to deal with network
sockets and the OSC protocol. It was implemented in Pure Data,
because it uses parts already written in Pure Data. The tpf-server
keeps track of the connected clients and coordinates a few common
parameters that the endpoints must agree on before they are able to
establish an audio transmission. It manages a few data containers
and notifies clients about updates when data is changed. The tpf-
server sends current data to the clients upon their request, while it
is the duty of the clients to request data if they receive an update
notification from the server. The data containers include:

4.3.1. Client ID And Name

When a client connects, the tpf-server assigns it a unique client ID
(unique in the scope of the session). This ID, usually a small integer
number, is used to identify each client. The same ID is also used
to send an OSC message to a specific client by putting it into the
first field of the OSC path. After establishing the connection to the
server, the client registers a name (e.g. given name or location). It
allows clients to display the list of connected peers in a more human-
friendly way (see Client List).

4.3.2. Parameter List

The client with the smallest ID, usually the one that connects first to
the server, is given a special role: it has the authority to set or change
a set of parameters that all clients are mandated to use for the current
session – samplerate, blocksize, bit resolution. Those parameters are
distributed to all clients and the clients either adjust their settings or
report an error when a mismatch occurs. The parameter list is not a
hard-coded set. Instead, it is fully defined by the clients.

4.3.3. Client List

The tpf-server keeps a list of all connected clients with their ID,
name, IP address and role. Whenever a client connects or discon-
nects, the tpf-server broadcasts an update of this list to all clients. It
is therefore crucial that clients terminate their connection properly,
otherwise they keep appearing in the client list until the connection is
considered terminated. This period depends on the operating system.

4.3.4. Link List

In a full mesh network, each node is linked to every other node. If n
is the number of nodes, the number of links (l) is:

l =
n(n− 1)

2
(1)

The tpf-server assigns each pair of clients a link ID, so each link
ID associates two clients. The tpf-server sends each client its own
list of their peer’s client IDs along with the corresponding link ID.
Clients use the link ID to establish the audio transmission to a spe-
cific peer. Early versions used one server port per transmission and
tpf-client used the link ID as the port offset parameter for running
JackTrip. In the current version, the link ID is used to generate a
token string. Two clients using the same ID and thus the same token
string are linked by the subscription-based UDP proxy.

https://github.com/reduzent/netpd-server

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

When every transmission was using its dedicated UDP port, it
seemed appropriate to let the server, as a central authority, assign
link IDs to avoid collisions, but also to ensure that only IDs cor-
responding to an active UDP proxy would be assigned. With the
subscription-based UDP proxy, this coordination task became moot,
as clients could also negotiate a token by peer-to-peer communica-
tion without involving the server. Future versions of the tpf-server
might remove the link list.

5. THE TPF-CLIENT

5.1. Written in Pure Data

The tpf-client is implemented in Pure Data, so it can be built on top
of an already existing framework. For communication to the server,
parts from the netpd client have been reused. Designed as a real-time
audio programming language, Pure Data has already covered many
aspects of dealing with low-latency audio. Furthermore, part of the
Pd "eco system" is a vivid community that has been contributing
many libraries extending the functionality of the software. Namely,
there are so-called externals for parsing and formatting OSC mes-
sages (osc) and for accessing network sockets (iemnet). Pure Data
has native JACK support built-in and runs on a variety of platforms.

5.2. Implementation

The purpose of the tpf-client is to manage audio transmissions to one
or many peers joining the same session. It is the implementation of
the client side of the tpf protocol. First drafts only implemented the
management aspects in order to get the necessary information for
starting the original JackTrip utility with the appropriate command-
line arguments, so the audio transmission part was left completely
to JackTrip. It was later decided to also re-implement the JackTrip
utility as an abstraction.

5.2.1. Rewrite of JackTrip as Pd abstraction

Implementing the audio transmission part in Pure Data has some ad-
vantages:

• The lack of a stable and feature-complete Pd external for run-
ning system commands makes it hard to consistently control
many JackTrip instances from Pd. JackTrip reimplemented as
a Pd abstraction is easier to control and interface with.

• An implementation of the JackTrip protocol in Pd allows to
extend it, if necessary. A small addition – the subscription by
sending a token message – to the JackTrip functionality was
necessary to support the subscription-based UDP proxy.

• Although able to create many JackTrip connections, the tpf-
client appears as one JACK client, which somewhat simplifies
the process of drawing connections in the connections dialog
of QjackCtl.

• Since the audio signals travel through Pd, some signal pro-
cessing could be applied. The current implementation doesn’t
apply any processing, though.

• Since the audio signals travel through Pd, signal level mon-
itoring can be used and graphically represented in the client
user interface.

• Signal path can be used to measure round-trip time of the au-
dio signal with built-in latency meter.

5.3. User interface

Figure 2: The tpf-client user interface.

The user interface displays a few configuration parameters that
are settable before the connection to the server is initiated:

• name

• hostname (or IP address) of the tpf-server

• blocksize (of the JackTrip packets)

• number of channels (outgoing)

• queue buffer size

The samplerate and bit resolution cannot be changed in the client.
The bit resolution is hard-coded to 16 bit. The samplerate is man-
dated by the JACK server and is inherited by Pd. After the connec-
tion is established, those configuration parameters become locked
and cannot be changed until the session ends.

The client registers its name and either uploads the audio pa-
rameters such as samplerate, blocksize, bit resolution to the server
or matches them against the mandated parameters, if another client
already has configured those parameters. If there is mismatch be-
tween configured and mandated parameters, the client either reports
an error (mismatch with samplerate, bit resolution) or silently ad-
justs the parameter (mismatch with blocksize). It is worth noting that
blocksize configured in the tpf-client is decoupled from the block-
size used by the JACK server. This allows clients to run JACK with
deviant blocksizes. After successfully having registered the name
and matched audio parameters, the connection button (top left) turns
blue to indicate that the client is ready for audio transmissions.

5.4. Managing transmissions

Peer clients are each listed in a separate row in the client interface.
Audio transmissions are not started automatically, but are initiated by
a user on either side by clicking the left-most button in the row. The
button on the respective row on the peer’s client starts flashing. Only
when confirmed by the other end by clicking on the flashing button
is the audio transmission started. The number of received channels
is represented by the number of squares turning from grey to black
in the respective row. Depending on the signal level of each chan-
nel, the square changes color from black (silence) to bright green
(full amplitude). The number in each square corresponds with port
number of the tpf-client in the QJackCtl connection dialog.

5.5. Transmission monitoring

During an audio transmission, three types of glitches are counted and
displayed in the respective row:

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

DROP number of dropped packets. Late packets that miss their
time frame to be played back are also considered dropped.

GLITCH number of audible audio glitches. Often, many packets
are dropped in a row, resulting in one audible glitch. Thus, the
number of audible artefacts is always smaller than the number
of dropped packets.

OOO number of packets received out of order. If an out-of-order
packet misses its time frame, it is dropped. Otherwise it is
played back in correct order.

All counters are reset to zero when the audio transmission is
restarted. Although those counters are not of much use during a real
concert (not much can be done about bad statistics), they might help
compare the quality of different network links, when testing setups
or internet providers.

5.6. Message and chat window

Beside the main window, tpf-client’s interface has a message win-
dow, where info, warning and error messages are displayed. There is
also a built-in chat in the chat window. A channel of communication
not involving audio is often desired.

5.7. Built-in latency measurement tool

To measure the overall round-trip time of the audio signal, both end-
points need to configure the audio path accordingly. The method is
robust enough to allow the signal to be played back by a speaker
and recorded with a microphone, even in a mildly noisy environ-
ment. The signal path of a full round-trip measurement is shown in
Figure 3 .

tpf-client

tpf-server

tpf-client ~~

Figure 3: Signal path of latency measurement.

5.8. Adding artificial latency

The tpf-client allows each audio transmission to add an artificial au-
dio delay. By adjusting the delay, it is possible to target a specific
total round-trip time. Reasons for latency adjustment include:

• The performance of a certain musical piece requires the per-
ceived latency to be aligned to the given tempo of the work.

• In a three-node setup, where one peer location is far more
remote than the other, the un-adjusted latencies differ signif-
icantly, so it might be desired to "harmonize" the perceived
latencies by artificially increasing the "distance" of the closer
peer.

5.9. Considerations

Certain aspects of writing software in Pd are difficult. Designing a
graphical user interface is relatively hard and the graphical represen-
tation is bound to pixel sizes and cannot be scaled dynamically (i.e.
by resizing the window). Also, it is not possible to create dynamic
interfaces that display different content depending on context. Due
to those limitations, it was decided to restrict some capabilities of
the client in order to provide a simple and consistent interface. The
number of channels per audio transmission is limited to 8. Also, the
maximum number of displayed peers and thus the number of con-
current audio transmissions is limited to 8. This limits the overall
number of connected client being able to interact with each other to
9. Those limitations are not imposed by the tpf-server or the pro-
tocol, and the client could be adapted if need be. They are abitrary
choices and during the past year of using the tpf-tools, those limits
never have been reached in real life.

Unlike the original JackTrip implementation, each party in a
setup using the tpf-tools can choose the number of channels to be
sent individually. This saves bandwidth and might improve qual-
ity. Also, the configured blocksize is not dependent on the blocksize
mandated by the JACK server. This can be an advantage, since the
value for the most optimal JACK configuration might differ between
clients.

6. EXPERIENCES AND DISCUSSIONS

We were interested to know how the usage of the tpf tools impacts
audio quality and overall latency. We performed tests to compare
the usage of the UDP proxy with a traditional JackTrip client-server
connection. We wanted to know whether the usage of the UDP proxy
has an influence on the number of dropped packets. In another test,
we examined the latency differences between using a UDP proxy
and a direct JackTrip connection. We also examined, whether the
tpf-client imposes a penalty to the quality of the audio transmission
compared to the original JackTrip.

6.1. Dropped packets imposed by UDP proxy

For counting glitches (which are a result of dropped packets), we sent
a 1kHz-sine-tone through JackTrip to a remote JackTrip instance,
that looped back the signal, and recorded the result for a predeterim-
ined period of time. We used the -z commandline option of Jack-
Trip, so that glitches were visually more easy to spot in the wave-
form. Then we counted the glitches by loading the recorded sound
file into a sound editor and examining the discontinuities in the wave-
form. We were not able to determine a significant difference between
a direct link and a link using the UDP proxy. At another instance,
that was totally unrelated to the test series, we experienced many
dropped packets. We later found out that the reason was a bug in the
driver of the virtual network interface of the virtual machine the UDP
proxy is running on. While the UDP proxy usually does not impact
the number of dropped packets negatively, there is a plethora of pos-
sibilities as to why the UDP proxy might behave badly, because it

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

depends on hardware, on the operating system and of the software
itself. These sources of error do not apply to a direct JackTrip link.

6.2. Latency imposed by UDP proxy

At the time of comparing the latency of a direct link to the UDP
proxy, the tpf-client had not been written. So a simple tool in Pd was
built to send a single UDP packet to a remote location, that sends
back the packet immediately. The tool measures the delay betwen
sending and receiving the packet. The average travel times turned out
to be identical for both, a direct link a link using the UDP proxy. This
behavior was consistent with different remote locations. This can be
eppxlained by the fact that both, the computer taking the samples and
the server running the UDP proxy, were located at the same campus.
By using tools like mtr or traceroute, we found out that the number of
hops between the computer taking samples and the remote computer
was the same for both link types. In a scenario where both endpoints
are located outside the campus hosting the UDP proxy, using the
UDP proxy adds additional latency. The amount depends on how far
the UDP proxy is away from the direct network path between both
endpoints.

6.3. Performance of the tpf-client

We also tried to examine the impact of using tpf-client compared
to the original JackTrip. It turns out that Pure Data adds one block
of additional latency, because the way it communicates with JACK
decouples its audio processing from the strict graph of the JACK
server. Many other JACK clients like JackTrip are tightly coupled
and do not add additional latency. When using a blocksize of 128 at
a samplerate of 48kHz, the penalty of using tpf-client is 2.6666 ms.
It increases with larger blocksizes or lower samplerates.

Because Pd interfaces the JACK server differently, it is possible
that Pure Data’s audio processing experiences audio drop-outs while
the JACK server does not. This means that the tpf-client introduces a
new source of possible buffer underruns. From our experience, this
theoretical penalty has not become manifest in more glitches when
using tpf-client, at least not when running tpf-client on a macOS
system. On Linux, Pure Data was found, in some situations, to be
the source of glitches when not running with realtime privileges. It
was usually simple to remedy the situation.

6.4. Shortcomings of the JackTrip protocol

While measuring the number of glitches with different combinations
of blocksize and number of channels, we found there was a sudden
increase in glitch rate when the number of channels exceeded a cer-
tain value. When running two parallel transmissions with each only
carrying half the channels, we experienced a low rate of glitches. By
running other tests with the tool iperf, which allowed us to set the
rate and size of UDP packets, we found that link capacity was only
one limiting factor. Not less important was the so-called Path MTU
10 . UDP packets larger than the Path MTU are fragmented during
transport. The loss of a single fragment results in the loss of the
whole UDP packet. The likeliness of a UDP packet being dropped
increases with the amount of fragmentation it experiences. For best
performance, the UDP packet size should not exceed the Path MTU.

10Maximum Transmission Unit, is the maximum packet size that is a trans-
mitted in a single network layer transaction, while Path MTU refers to the
maximum packet size that is transmitted through all intermediate hops with-
out fragmentation.

By running tests with iperf, we were not able to saturate a network
link with a UDP stream, when choosing a relatively large packet size
(e.g. 16000 bytes). By selecting a smaller packet size (e.g. 1400
bytes), we were able to achieve a data transfer rate close to the theo-
rethical maximum while still keeping the number of dropped packets
low. This finding shows that the JackTrip protocol is not suitable for
all kinds of payloads, since the UDP packet size depends on bit res-
olution, number of channels and blocksize:

packetsize = HUDP +H jacktrip +N channel ×
bres

8
×Bbuffer (2)

where HUDP = Header size of UDP datagram,
H jacktrip = Header size of JackTrip frame,
N channel = Number of channels,

bres = bit resolution,
Bbuffer = buffer size

Larger numbers of channels or blocksize result in UDP packet
sizes bigger than the optimal size. With a typical Path MTU of 1500,
and a given blocksize of 128, the largerst number of channels still
fitting into the Path MTU is 5 (1296 bytes). A single audio transmis-
sion with a high number of channels could be split into two or more
parallel transmissions with a lower number of channels in order to
reduce the resulting packet size. However, synchronization between
the transmissions is not guarantueed and therefore this is not a suit-
able solution. The ability to detect the Path MTU and to optimize
UDP packet size by splitting a transmission into many, while keep-
ing synchronicity, are features that still need to be researched.

6.5. UDP hole punching

While there is none or only a negligible penalty for using the UDP
proxy when it is located close to one participating party, it might
add significantly to unacceptable latency, when the participating par-
ties are all located geographically distant from it. In terms of net-
work latency, using a direct link is sometimes as good, and in many
cases clearly superior to using a proxy. A technique called UDP
hole punching allows us to establish a direct UDP conncetion be-
tween two end-points, both acting as client, that is able to traverse
many types of NAT-firewalls. NAT-firewalls usually let an incoming
UDP packet pass, when its receiver address (IP and port) matches the
sender address of a previously outgoing UDP packet. That is because
UDP is a stateless protocol and has no notion about connection. That
is how NAT-firewalls discern outbound connections (that are usu-
ally allowed) from inbound connections (that are usually blocked).
Before establishing the connection, both endpoints contact a central
server to learn about their peer’s public IP address and port number.
Then they start sending packets to the address they learned. Because
this happens on both sides, the firewall on either side "thinks" the
connection was initiated from a local client and it will pass incoming
packets. The technique is already used in webRTC and IP telephony
applications. The tpf-client supports UDP hole punching as an ex-
perimental feature. By double-clicking (instead of single-clicking)
the left button in the peer row an audio transmission using a direct
link is requested. There are still many scenarios where establishing a
such link fails. Supporting more cases and making UDP hole punch-
ing a viable option is certainly a field worthy of further exploration.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

7. ACKNOWLEDGEMENTS

Our research was funded by the Swiss National Science Foundation
11 and took place at the Institute For Computer Music And Sound
Technology 12 (ICST), Zurich University of the Arts, Switzerland.
Over the course of two years, we have been working within a team
that explored many aspects of telematic performances, including sce-
nography, audio engineering, audio and video streaming, network
technology and considerations in the field of media theory. We are
grateful for the collaboration with those very interesting people and
feel there is still a lot waiting to be explored and further researched.
We have been working with Matthias Ziegler, flutist and head of the
research group, Benjamin Burger and Joel De Giovanni, video artists
and scenographers, Bojan Milosevic, composer and researcher, Gina
Keller and Ernesto Coba, audio engineers. We also thank all col-
laborating parties spread around the world for having showed the
willingness to organize and perform telematic concerts with us and
to use and test our tools. We appreciate being a part of this vivid
community.

8. REFERENCES

[1] Juan-Pablo Caceres and Chris Chafe, “JackTrip: Under the
Hood of an Engine for Network Audio,” Journal of New Mu-
sic Research, 2010.

[2] Robert W. McChesney, Digital Disconnect: How Capitalism is
turning the Internet against Democracy, The New Press, New
York, 2013.

[3] “tpf: Protocol Specification,” https://gitlab.zhdk.
ch/TPF/tpf-server/blob/master/protocol_
specification.txt.

[4] Roman Haefeli, “netpd - a Collaborative Realtime Networked
Music Making Environment written in Pure Data,” in Linux Au-
dio Conference, 2013.

[5] Miller Puckette, “Pure Data,” http://puredata.info,
1996, Software.

[6] “Open Sound Control,” http://opensoundcontrol.
org/, Protocol.

[7] J. Romkey, “A Nonstandard For Transmission Of IP Datagrams
Over Serial Lines: SLIP,” Tech. Rep. RFC 1055, IETF, Network
Working Group, 1988.

[8] Adrian Freed and Andy Schmeder, “Features and Future of
Open Sound Control version 1.1 for NIME,” in NIME, 2009.

[9] Miller Puckette, “Pd Documentation,” https://puredata.
info/docs/manuals/pd/x2.htm#s7.1, 2.7.1. abstrac-
tions.

11SNF: http://www.snf.ch/
12ICST: https://www.zhdk.ch/en/research/icst

https://gitlab.zhdk.ch/TPF/tpf-server/blob/master/protocol_specification.txt
https://gitlab.zhdk.ch/TPF/tpf-server/blob/master/protocol_specification.txt
https://gitlab.zhdk.ch/TPF/tpf-server/blob/master/protocol_specification.txt
http://puredata.info
http://opensoundcontrol.org/
http://opensoundcontrol.org/
https://puredata.info/docs/manuals/pd/x2.htm#s7.1
https://puredata.info/docs/manuals/pd/x2.htm#s7.1
http://www.snf.ch/
https://www.zhdk.ch/en/research/icst

	1 Introduction
	1.1 The obstacles of current IP networks
	1.2 The complexity of many nodes
	1.3 Our motivation

	2 Various connection modes
	2.1 Client connects to server (standard mode)
	2.2 Two clients connect to each other
	2.3 Connection using a UDP proxy

	3 Subscription-based UDP proxy
	3.1 Implementation
	3.2 Considerations

	4 The tpf server
	4.1 Based on netpd-server and OSC
	4.2 netpd-server
	4.3 The tpf-server internals
	4.3.1 Client ID And Name
	4.3.2 Parameter List
	4.3.3 Client List
	4.3.4 Link List

	5 The tpf-client
	5.1 Written in Pure Data
	5.2 Implementation
	5.2.1 Rewrite of JackTrip as Pd abstraction

	5.3 User interface
	5.4 Managing transmissions
	5.5 Transmission monitoring
	5.6 Message and chat window
	5.7 Built-in latency measurement tool
	5.8 Adding artificial latency
	5.9 Considerations

	6 Experiences and Discussions
	6.1 Dropped packets imposed by UDP proxy
	6.2 Latency imposed by UDP proxy
	6.3 Performance of the tpf-client
	6.4 Shortcomings of the JackTrip protocol
	6.5 UDP hole punching

	7 Acknowledgements
	8 References

